AI技术内参完结

  • 008讲曾经辉煌的雅虎研究院

    雅虎是最早成功的互联网公司之一,也是最早意识到需要把基础研究,特别是机器学习以及人工智能研究,应用到实际产品中的公司。雅虎从很早就开始招聘和培养研究型人才,雅虎研究院就是在这个过程中应运而生的。 今天我就来说一说雅虎研究院的历史,以及过去十多年间取得的成就,聊一聊如何通过引进高级人才,迅速构建起一支世界级的研发团队。当然,也会聊一聊研究院的衰落。高级研发机构…

    2 4 月, 2024
    00
  • 007讲LDA模型的前世今生

    在文本挖掘中,有一项重要的工作就是分析和挖掘出文本中隐含的结构信息,而不依赖任何提前标注的信息。今天我要介绍的是一个叫做LDA(Latent Dirichlet Allocation)的模型,它在过去十年里开启了一个领域叫主题模型。 从LDA提出后,不少学者都利用它来分析各式各样的文档数据,从新闻数据到医药文档,从考古文献到政府公文。一段时间内,LDA成了分…

    2 4 月, 2024
    00
  • 006讲Google的点击率系统模型

    广告是很多互联网公司的重要收入来源,比如Google、Facebook、微软、阿里巴巴、百度、腾讯等。以Facebook为例,它的2017年第一季度财报显示,公司总营收为78.4亿美元,这其中98%的收入来自广告。同样,在这些公司内部,都有着完善的广告系统来支撑其广告业务。 当然,大型广告系统的成功需要依靠很多相互协调的子系统和组件。今天我要和你聊的是广告系…

    2 4 月, 2024
    00
  • 005讲数据科学家基础能力之系统

    对于初学人工智能的工程师或者数据科学家来说,在知识积累的过程中,“系统”往往是一个很容易被忽视的环节。特别是非计算机科学专业出身的朋友,一般都没有真正地建立过“系统”的概念,在今后从事人工智能的相关工作时,很可能会遇到一些障碍。 今天我想给你分享一下,作为人工智能工程师和数据科学家,需要建立的关于“系统”的最基本认知。这些认知能够帮助你把书本的理论知识和现实…

    2 4 月, 2024
    00
  • 004讲数据科学家基础能力之机器学习

    想要成为合格的,或者更进一步成为优秀的人工智能工程师或数据科学家,机器学习的各种基础知识是必不可少的。然而,机器学习领域浩如烟海,各类教材和入门课程层出不穷。特别是机器学习基础需要不少的数学知识,这对于想进入这一领域的工程师而言,无疑是一个比较高的门槛。 今天,我来和你聊一聊如何学习和掌握机器学习基础知识,又如何通过核心的知识脉络快速掌握更多的机器学习算法和…

    2 4 月, 2024
    00
  • 003讲数据科学家基础能力之概率统计

    学习人工智能的工程师,甚至是在人工智能相关领域从业的数据科学家,往往都不重视概率统计知识的学习和培养。有人认为概率统计知识已经过时了,现在是拥抱复杂的机器学习模型的时候了。实际上,概率统计知识和数据科学家的日常工作,以及一个人工智能项目的正常运作都密切相关,概率统计知识正在人工智能中发挥着越来越重要的作用。 和机器学习一样,概率统计各个领域的知识以及研究成果…

    2 4 月, 2024
    00
  • 002讲聊聊2017年KDD大会的时间检验奖

    国际数据挖掘与知识发现大会ACM SIGKDD(ACM SIGKDD Conference on Knowledge Discovery and Data Mining),简称KDD,是由美国计算机协会ACM(The Association for Computing Machinery)的数据挖掘与知识发现专委会SIGKDD(Special Interes…

    2 4 月, 2024
    00
  • 001讲如何组建一个数据科学团队

    数据科学团队眼下已经成了很多数据驱动型公司的标准配置,数据科学家也成了最“性感”的职业。不少公司都在想办法建立或扩展自己的数据科学团队,而究竟需要什么样的数据科学团队,成了很多公司在发展过程中都会遇到的棘手问题。 在目前的职业市场上,有各种背景、各种经历的人都自称为“数据科学家”。那么,如何从这个蓬勃发展,却鱼龙混杂的人才市场中找到合适的团队成员呢?今天我就…

    2 4 月, 2024
    00